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1. ~Introduction

The ‘semi-implicit integration method has been studied at considerable
length at NMC since the summer of 1969. It was then that an effort began
to examine A. Robert's suggestion that the method offered considerable
potential for reducing the computation time required in primitive equation
integrations. Following a successful application of the method:to a baro-
tropic model (McPherson, 1971), an extension to a simple baroclinic model
was attempted. -

Again, the path had been explored by Robert, who in turn was following
the Russian Marchuk (1965). Robert's approach attempts to isolate those
terms which principally govern gravitational oscillations, both external and
internal, for implicit treatment. To the extent which his method is.
successful the result is a stabilization of both the rapidly-moving external
gravity mode and all of the allowable internal modes. Since at least some of
the latter possess relatlvely low frequencies, comparable to the frequencies
of the Rossby modes, the implicitization of all gravitational modes does not
seem to be necessary.

Moreover, this approacholn practlce requires the solution of a boundary-
~ value problem at each time step. This problem can be phrased as a coupled
system of two-dimensional Helmholtz-type equations, one per model layer.

Very early in the development of the semi-implicit extension to baroclinic
models, it was realized that in a model with many layers, the solution of
such a large boundary-value problem might be very time-consuming. Accordingly,
an-effort was initiated ‘to'examine possible modifications of the method so
that only the: external gravity mode and the fastest of the internal modes
would be treated implicitly. It was felt that if this could be done, the
size of the resulting system of Helmholtz equations could be reduced, while
a relatlvely long time step could still be used.

The first abortive attempt was documented in Office Note 52. Subsequent’
experiments did not illuminate a way to separate external from internal modes
in the difference equations. It was, therefore, concluded that further study
would be unprofitable. An account of these experiments is given in Office
Note 53, at the conclusion of which the carcass of the modified semi-implicit
method was buried. Shortly, thereafter, Shuman (Office Note 54) suggested
that the burial had been premature, and urged its resurrection. When the
grave was opened, a red herring ' disguised as good idea ' leaped out and led
us on a merry chase. This note is an account of our adventures.



2, The state of the difference equations on the funereal occasion

In Section 4 of Office Note 53, the linearized difference equation
for a model in one horizontal dimension were given as
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These equations are based on Phillips' o-vertical coordinate,
a=rplp, .

The overbar notation denotes a basic state quantity, the (-o)
notation denotes a vertical average, and spatial differencing is indicated
by a subscript (x) or (o). The analyses discussed in Office Note 53, as well
as those of subsequent sections of this note, were performed in the frame-
work of a two-layer representation of a fluid, as illustrated below.
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Such a vertical structure allows a free mode with phase speed of 306 m sec %,
and one corresponding to an internal mode, with phase speed of 81 m sec”!l.
These values were calculated on the basis of an isothermal basic state at
250 K in Office Note 47.

The computational stability analysis of the system (F-1, F-6)
presented in Office Note 53 indicated that the system is stable regardless
of the time step, except that the computational mode corresponding to the
internal gravity wave is unstable. The reason for this was not clearly
understood until Shuman analyzed it in Office Note 54. He showed that a

"mixed" implicit-explicit formulation of the linear equation for a homo-=
geneous fluid with a free surface behaved in a manmer similar to that we

had described. He also demonstrated that some "mixed" formulations may be
stable, and gave an example of one such system which is not only stable but
allows a time step twice as long as the usual leapfrog scheme. This
technique has since been examined by Brown and Campana (1971), who have found
it to be suitable for operational implementation.

From Shuman's work, then, came the suggestion that the mixed implicit-—
explicit formulation might yet be made to work, but it appeared that we
would have to be siezed by an attack of craftiness to pick out a stable
mixture. :

3. The Sum-and-~Bifference Method I

Arguing that the external mode is primarily associated with the
integrated divergence field, while the internal mode is primarily associated
with the divergence of the vertical shear, we first replaced the two
momentum equations (one per layer) by an equation for the sum of the winds
and one for the difference:
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We then treated the vertically-integrated equatlon implicitly, and the
vertically-differentiated equation explicitly:
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The remaining equations of the set are as given in eqns. (F2-F6). The
system of equations thus features an implicit treatment of the vertically-
integrated wind in the momentum equation and the continuity equation (F-2),
and explicit treatment of the equation for the wind shear, the diagnostic
equation in & (F-6), and the stability term in the thermodynamic equation
(F-3).
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We then substituted a trial solution of the form Q = Q.,C'e , as in

previous analyses, and eventually arrived at a pair of equatlons in ¢,
the time-~dependent part of the solutions
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and upper layers of the "model respectively. If nontrivial solutions
exist, the determinant of these. two equatlons -must vanish., This require-
ment leads to an eighth-order polynomial in ¢ the roots of which must be
evaluated numerically for a given basic state. The procedure followed
was as outlined in Office Note 52. We defined
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and then evaluated the determinant of the above equations for m=1,2,...7,
(and an isothermal basic state at 250 k) over the complex plane. For each
m, the loci of the zeros of the determinant, corresponding to the roots of
the polynomial, were calculated. For stability, no root should be located
outside the unit circle of the complex plane. WNeutral response is indicated
by roots on the unit c1rcle and damplng by roots inside the unit circle.

The results of this procedure are shown in Figure 1.  Roots corresponding
to the externgl mode (identified by the greater phase angle) lie on the
unit circle until m = 5, but are outside for larger values. For comparison,
the analogous roots in exp11c1t leapfrog scheme remain on the unit circle
only up to m =-2. Thus, this method does not completely stabilize the
external mode, but does relax somewhat the stability criterion associated
with it. 1In principle, if one could employ a ten-minute time step with an
:explicit integration method, this modified implicit method would permit a






25 minute time step. Only one Helmholtz~type equation, in the surface
pressure p,, would have to be solved at each time step.

However, the stable "mixed" scheme proposed by Shuman and employed by
Brown and Campana would allow a 20 minute time step, with no boundary
value problem to solve. This sum-and-~difference method therefore
appeared to be of little economic value. Moreover, the fact that it is
the external mode which becomes unstable first indicated that our objective
had not achieved.

4. The Resurrection Method I

The discouraging results of the experiment described in the preceding
section led us to cast about for another approach. After considerable
experimentation, we arrived at the idea of formally replacing the geo-
potentials in the momentum equations through the use of the hydrostatic
equation:
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We then argued that we could possibly effect the desired separation of
external and internal modes by treating the pressure~gradient terms
implicitly and the specific~volume-gradient terms explicitly. Thus,
eqns. (SI-1, SI-2) were replaced by
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but the rest of the equations remained unaltered.

A similar evaluation of the roots of the frequency equation was
performed, again for an isothermal basic state at 250 K. The loci of the
roots are plotted in Figure 2 for w=1,2,...,7. As in the previous case,
the external mode becomes unstable first, but for an even smaller value of
m. According to the results of this analysis, the method in question
would permit a time step of only twice that permitted by an explicit scheme,
and a boundary-value problem would still have to be solved at each time
step. Clearly, this was an unacceptable result.






5. The Sum—and-Difference Method IT

One of the ideas to emerge following Shuman's discussion of "mixed"
systems is that one can arrange a mixture such that the result is pre-
cisely equivalent to an explicit leapfrog scheme. Consider the linear
equations governing a homogeneous fluid with a free surface,
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where h is the depth of the fluid, and H is its mean depth. Using
centered time differences, one can write the analogous difference
equations as
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where trigonometric spatial dependence (u, h ~v elkx) has been assumed.

Note that the height gradient term in the momentum equation is evaluated

at time ¢t = (ntl)At, which has been called a "backward" implicit approxi-
mation by Kurihara (1965). The divergence term in the continuity equation
is evaluated at t = (n-1)At, which.is a "forward" scheme. By itself, the
""backward" approximation can be demonstrated to be damping, while it is
well known that the "forward" scheme is amplifying. It is easy to show
that their combination is equivalent to the customary leapfrog method.

n .
Assume that u, h v ", so that the equations become

(zZ2-1)u + (2ikAtgzZ)h = 0

(2ik tH)u + (z2-1)h 0

The determinant of this system must vanish, which leads to the frequency
equation

z2 + (2ikeAt)z - 1 = 0,

where ¢ = vgH. This is identically the frequency equation associated with
the leapfrog scheme.



It seemed that this idea might be employed in the problem of
separation of the external and internal modes. In the first Sum-and-
Difference method, we had evaluated both the shear-momentum equation (SI-2)
and the thermodynamic equations explicitly. This formulation failed to
stabilize the external mode, although the vertically-integrated equation
of motion and the continuity equation were treated implicitly. We were
led to suspect, then, that the shear momentum equation must contain some
influence on the external mode, so that an explicit evaluation would not
be adequate. At this point, we postulated that if this equation were
evaluated by a "backward" implicit approximation, the result would stabilize
(and possibly damp) the external mode, to the extent that the shear-
momentum equation governs the external mode. But to the extent that the
equation governs the internal mode, we argued that the "backward" evaluation
should be combined with a "forward" evaluation of the stability term of the
thermodynamic equation. 1In this way, it was expected that the internal
mode would effectively be evaluated explicitly.

The vertically-differenced equation (SI-2) was thus replaced by
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and the thermodynamic equation was modified to employ a "forward" evaluation
of the stability term:
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The results of the computational stability analysis of this system are
plotted in Figure 3. The internal mode is seen to be treated neutrally;
i.e., all roots lie on the unit circle for the range of values of m. But
again, the external mode becomes unstable, although at a value of m =
slightly in excess of 6. This represents a further relaxation of the
stability criterion associated with the external mode...a 30-minute time
step would be allowed if an explicit method permitted a 10-minute time _
step...but the objective of stable treatment, regardless of time step, of
the external mode, remained out of reach.

6. The Resurrection Method IT

We next decided that, because of the damping properties of the
"backward" approximation, we could evaluate all of the terms of the
momentum equations at time t = (nt+tl)At, while retaining the "“forward"
approximation of the stability term in the thermodynamic equation. In
this way, we anticipated that the external mode would be stable, and
damped, for any time step, while the internal mode would be calculated






explicitly as in the previous experiment. Tt was decided to try this
without the sumw-and-difference formulation, since that system is somewhat
awkward to use. Thus the momentum equations corresponding to (RI-1, RI-2)
were rewritten as
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The thermodynamic equation was retained in the form (SII-2), and, for
consistency, the continuity equation (F-2) was rewritten as
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The remaining equations, the ideal gas law and the diagnostic equation
in 0, were unchanged.

Figure 4 displays the results of the computational stability analysis.
As anticipated, the external mode is strongly damped as the parameter m
increases. The internal mode is calculated explicitly, and becomes
unstable when m is sufficiently large to violate the ordinary linear
stability criterion for a wave with a phase speed of 81l m sec”L;

With this result, the objective of separating the external and
internal modes had been achieved. In order to confirm the results of
these analyses, experimental integrations were performed with two-layer
models based on the differencing systems discussed in Sections 4, 5, and 6,
together with a completely explicit and a completely implicit formulation.
These integrations were performed in one horizontal dimension, with a
staggered grid such that the winds u,, u, were defined as points midway
between points where the thermodynamic variables were defined. The mesh
length (distance between adjacent values of the same quantity) was 762 km,
the basic state was assumed isothermal at 250 ¥, and Py= 1000 mb. ‘The
winds were initially given by

: (ZEE;EQ} (wave #10)

u = 10 sin I,
where L = 49Ax, and cyclic contihuity was. prescribed on the lateral

boundaries. The results of these integrations are summarized in the
following table.
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Max, At ( At max. ) [ At max. }
Method Response (minutes) (At explicit numerical (At explicitjanalytic
Explicit Neutral 20 1 1
Resurrection I Neutral | 60 3 2.1
Sum-and-Diff. II Neutral 70 3.5 3.1
Resurrection II Damping (Ext. mode) 20 4.5 3.9

Neutral (Int. mode)

Implicit Neutral 120% 6 ©

*Longest time step tried.

The ratio At(max)/At(explicit) shows some discrepancies between the evaluation from the compu-
tational stability analyses and the estimate obtained from numerical integrations. This is
undoubtedly due to spatial truncation in the numerical integrations retarding the actual phase
speeds of the gravitational modes. Overall, there is good agreement between theory and
experiment.




7. Conclusion

With the Resurrection IT scheme, we indeed have demonstrated that
the external mode can be separated from the internal mode in a two-
layer model, and that the former can be treated fmplicitly and damped,
while the latter is treated explicitly with neutral response. Such a
scheme has several desirable properties, among them the selective
damping of the external mode, but principally that it allows a time
step approximately four times that permitted by an explicit model.

Only one relatively simple boundary-value problem need be solved at each
time step. These results have been confirmed by limited numerical
integration of a two~layer model.

Howevever, it has been suggested by W. L. Jones! of NCAR that the
numerical phase speed of the internal gravity mode is affected by the
vertical resolution in models in much the same way as horizontal
resolution affects the translation of short meteorological waves. That
is, the greater the resolution, the more closely the numerical phase
speed approaches the analytic. This means that as the number of layers
in a model increases, the numerical phase speed of the first (most
rapidly-propagating) internal mode will approach a value in the range of
100-150 m sec™!. If the Resurrection II method were applied to a model
with many layers, the ratio of At(max)/At(explicit) would drop to between
two and three. Allowing for the time required to solve a Helmholtz~-type
equation each time step, the potential economy is not appreciably
greater than is offered by the method Brown and Campana are studying.

To confirm this, a linear computational stability analysis of an
isothermal four-layer model using Phillips' o-coordinate and the
Resurrection II method has been carried out. The model is as described
in Office Note 47. In that note, the phase speed of the first internal
mode is calculated to be 110 m sec_lg As anticipated, the analysis showed
that the ratio At(max)/At(explicit) would be approximately three.

It therefore  appears that the application of the Resurrection II
method to a multilevel model is not justifiable solely on economic
grounds. However, one might consider employing it to take advantage of
its other properties; for example, the selective damping of the external
mode. At the present time, it seems more profitable to adopt the un-
modified semi-implicit method for use in multilayer models. We have made
that decision, and do not propose to pursue the red herring any further.

1Personal communication
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